2:1, with a disordered solvate molecule at the (x,x,0) position on the twofold axis. The refinement of the disordered ethyl acetate molecule gave some trouble; several attempts were made to interpret the confused difference map and to refine the six independent heavy atoms with population factors of 0.5, but there were always very high correlations between various parameters and an unacceptable molecular geometry. The best interpretation was to place the bridge O atom O1S on the twofold axis and to consider the C atoms of the acetyl and ethyl groups to be equivalent; in this interpretation, the carboxyl O atom O2S is the only atom with a population factor of 0.5. At the end of the refinement, the geometry of the group was quite acceptable but nevertheless, we considered the inclusion of the H atoms of the ethyl acetate molecule in the model to be of little significance.

Data collection and cell refinement: Enraf-Nonius software. Data reduction and structure refinement: *SDP-Plus* (Frenz, 1983). Structure solution: *MULTAN11/82* (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). Software used to prepare material for publication: *PARST* (Nardelli, 1983) and *ORTEPII* (Johnson, 1976).

We thank the Servizio Italiano di Diffusione Dati Cristallografici del CNR (Parma) for access to the Cambridge Data Files.

References

- Aimi, N., Asada., Y., Sakai, S. I. & Haginiwa, J. (1978). Chem. Pharm. Bull. 26, 1182-1187.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bui, A. M., Das, B. & Potier, R. (1980). *Phytochemistry*, **19**, 1473-1475. Chiaroni, A., Riche, C., Diatta, L., Andriamialisoa, R. Z., Langlois, N.
- & Potier, P. (1976). Tetrahedron, 32, 1899-1902.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP User's Guide. Version of 6 January 1983. Enraf-Nonius, Delft, The Netherlands.
- Henriques, A., Kan, C., Chiaroni, A., Riche, C., Husson, H.-P., Kan, S.-K. & Lounasmaa, M. (1982). J. Org. Chem. 47, 803-811.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lefebvre-Soubeyran, O. (1973). Acta Cryst. B29, 2855-2863.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Plat, M., Le Men, J., Janot, M. M., Budzikiewicz, H., Wilson, J. M., Durham, L. J. & Djerassi, C. (1962). Bull. Soc. Chim. Fr. pp. 2237– 2241.
- Saxton, J. E. (1983). The Aspidospermine Group. Indoles. The Monoterpenoid Indole Alkaloids, pp. 331-437. New York: Wiley.
- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, p. 411. London: Macmillan.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1993). C49, 1691–1693

Structure of (±)-Tetrahydropalmatine

Béla Ribár*

Serbian Academy of Sciences and Arts – Branch in Novi Sad, 21000 Novi Sad, Ul. Svetozara Markovića 4, Serbia

DUŠAN LAZAR, OLGA GAŠIĆ AND ISTVÁN KANYÓ

Institute of Physics and Institute of Chemistry, Faculty of Sciences, 21000 Novi Sad, Trg Dositeja Obradovića 4, Serbia

YURY ALEXANDROVICH SIMONOV AND VICTOR CHRISTOFOROVICH KRAVTSOV

Institute of Applied Physics, Academy of Sciences, Kishinev, 277028 Akademicheskaya 5, Moldavia

(Received 18 November 1992; accepted 5 March 1993)

Abstract

In 5,8,13,13a-tetrahydro-2,3,9,10-tetramethoxy-6*H*dibenzo[*a*,*g*]quinolizine, according to the puckering parameters [Cremer & Pople (1975). J. Am. Chem. Soc. 97, 1354–1558] the trans fused ring B [Q =0.518 (5) Å, $\varphi = 145.4$ (7)°, $\theta = 51.6$ (6)°] and ring C [Q = 0.529 (4) Å, $\varphi = 328.2$ (5)°, $\theta = 48.2$ (4)°] of the quinolizine moiety both have almost perfect halfchair conformations. The mean value of the three C—N—C angles is 110.0 (3)° indicating sp^3 hybridization of the N atom. Molecules are held together by van der Waals interactions.

Comment

Tetrahydropalmatine is a tetrahydroprotoberberine alkaloid previously isolated from Corydalis aurea, C. lutea and C. ochroleuca (Glasby, 1975). We have isolated the same alkaloid from the roots of C. cava, as well as from the overground parts and roots of C. solida collected at the Fruška Gora mountain (Vojvodina). Isolation was performed as described by Gašić, Popović & Dragutinović (1985). The dihedral angle between the phenyl rings A and D is 25.8 (1)° as compared to 33.8 (1)° in isocorypalmine (Ribár, Radivojević, Gašić, Kanyó & Golič, 1992) 36.7 (1)° corydaline (Ribár, and in Lazar. Radivojević, Engel, Gašić & Kanyó, 1992). The O3-C19 bond is perpendicular to the plane of phenyl ring D, while the O4-C20 bond is in the plane of the same ring. The O1-C21 and O2-C18 bonds are in the plane of phenyl ring A, as indicated

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71227 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: NA1036]

N C1

C2

C20

C21

0.5447(1)

by the corresponding torsion angles. According to Zhao, Ren, Wu & Yu (1988), tetrahydropalmatine has an effect on blood vessel contraction.

Fig. 1. Perspective view of the molecule showing the atomic numbering. The H atoms are shown but are not labelled.

0.0117 (1)	0.00000 (2)	0.1,000 (1)	0=(1)
0.6829(1)	0.6748 (2)	0.1024 (5)	39 (1)
0.6378 (1)	0.6594 (2)	0.1380 (5)	34 (1)
0.6179(1)	0.6917 (3)	0.3128 (5)	42 (1)
0.5736(1)	0.6517 (3)	0.3568 (5)	41 (1)
0.4999 (1)	0.6274 (2)	0.2495 (5)	39(1)
0.4682(1)	0.6192 (2)	0.0903 (5)	33 (1)
0.4228 (1)	0.6146 (2)	0.1254 (5)	34 (1)
0.3916(1)	0.6042 (2)	-0.0158 (5)	36 (1)
0.4074 (1)	0.5967 (2)	-0.1956 (5)	40 (1)
0.4534 (1)	0.6016 (2)	-0.2309 (5)	38 (1)
0.4845 (1)	0.6131 (2)	-0.0891 (5)	35 (1)
0.5341 (1)	0.6184 (2)	-0.1276 (5)	39 (1)
0.5622 (1)	0.6027 (2)	0.0457 (4)	32 (1)
0.6124 (1)	0.6169 (2)	0.0138 (5)	33 (1)
0.6333 (1)	0.5859 (2)	-0.1449 (5)	36 (1)
0.6777 (1)	0.6004 (2)	-0.1794 (5)	41 (1)
0.7028 (1)	0.6477 (2)	-0.0550 (5)	42 (1)
0.7711 (2)	0.7130 (4)	0.0125 (8)	83 (2)
0.3929 (2)	0.6967 (3)	0.3544 (6)	55 (1)
0.3161 (1)	0.5763 (3)	-0.0988 (7)	61 (1)
0.6814 (2)	0.5149 (3)	-0.4379 (7)	66 (1)

0.6535(2)

0.1935 (4)

32(1)

Table 2. Geometric parameters (Å, °)

Crystal data		14010 2	$\mathbf{Iable 2. Ocometric parameters}(\mathbf{A}, \mathbf{C})$				
Ci ysiai dala		01—C16	1.372 (5)	C3C4	1.520 (5)		
$C_{21}H_{25}NO_4$	Cell parameters from 15	01-C21	1.410 (6)	C5—C6	1.502 (5)		
$M_r = 355.43$	reflections	O2—C17	1.381 (4)	C6—C7	1.380 (4)		
Orthorhombic	$\theta = 20 - 25^{\circ}$	O2C18	1.420 (8)	C6—C11	1.397 (5)		
Dhaa	$v = 0.68 \text{ mm}^{-1}$	O3-C7	1.387 (4)	C7—C8	1.398 (5)		
	$\mu = 0.08 \text{ mm}$	O3—C19	1.444 (6)	C8–C9	1.397 (5)		
a = 29.817 (12) A	T = 293 K	04-C8	1.357 (4)	C9—C10	1.398 (4)		
b = 17.001 (7) A	Prism	04	1:431 (5)	C10-C11	1.401 (5)		
c = 7.279 (5) Å	$0.60 \times 0.25 \times 0.25$ mm	N	1.468 (5)		1.508 (4)		
$V = 3690 (3) Å^3$	Colourless	N-C3	1.405 (4)	C12 - C13	1.538 (5)		
7 = 8	Crystal source: alkaloid from		1.475 (4)	C13 - C14	1.334 (4)		
L = 0	Crystal source. arkalold from	C1 = C2	1.374 (4)	C14 = C15 C15 = C16	1.414 (3)		
$D_x = 1.280 \text{ Mg m}^{-1}$	Coryaalis cava and C.	$C_{1} = C_{1}$	1.570 (5)	$C_{16}^{}$	1.370 (4)		
Cu $K\alpha$ radiation	solida	$C_2 - C_1 = C_1$	1.383 (5)	610–617	1.424 (5)		
$\lambda = 1.54178 \text{ Å}$			1,000 (0)	0.1 00 00			
		$C/-O_{3}-C_{19}$	112.2 (3)	04 - 08 - 09	125.3 (3)		
Data collection		$C_{0} = 04 = C_{2}0$	117.1(3)	$C^{2} = C^{2} = C^{2}$	118.4 (3)		
DAD IMP differentemeter	$0 - 69^{\circ}$	C10 - 01 - C21	117.7(3)	$C_{0} = C_{0} = C_{10}$	119.8 (3)		
	$v_{\rm max} = 08$	C17 = 02 = C18 C4 = N = C5	107.7(3)	C6C11C10	121.3 (3)		
$\omega - \theta/2\theta$ scans	$h = 0 \rightarrow 36$	C4-N-C13	1118(3)	C6 - C11 - C12	1207(3)		
Absorption correction:	$k = 0 \rightarrow 21$	C5-N-C13	110.4 (3)	C10-C11-C12	120.7(3) 1214(3)		
none	$l = 0 \rightarrow 8$	C2-C1-C17	120.7 (3)	C11-C12-C13	111.8 (3)		
2325 measured reflections	3 standard reflections	C1C2C3	117.9 (3)	N-C13-C12	107.7 (3)		
2325 independent reflections	frequency: 60 min	C1-C2-C14	120.3 (3)	N-C13-C14	111.3 (3)		
2210 absorved reflections	intensity variation: <2.5%	C3-C2-C14	121.8 (3)	C12—C13—C14	112.4 (3)		
	intensity variation. <2.3%	C2-C3-C4	110.9 (3)	C2-C14-C13	121.2 (3)		
$[I > 3\sigma(I)]$		NC4C3	109.3 (3)	C2-C14-C15	119.2 (3)		
		NC5C6	112.8 (3)	C13—C14—C15	119.7 (3)		
Refinement		C5-C6-C7	118.7 (3)	C14—C15—C16	120.6 (3)		
Refinement on F	$w = 5.605[\sigma^2(F)]$	C5-C6-C11	120.6 (3)	01-C16-C15	125.6 (3)		
	$w = 5.005[0 (1_0)]$	$C_{-}C_{0}-C_{1}$	120.7 (3)	01-016-017	114.8 (3)		
Final $R = 0.061$	$+ 0.0010/1F_0$	03 - 07 - 00	119.1 (3)		119.6 (3)		
wR = 0.070	$(\Delta/\sigma)_{\rm max} = 0.80$	03 - 07 - 08	119.5 (3)	02 - C17 - C1	125.0 (3)		
S = 3.85	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$	04 - 08 - 07	121.0(3)	$C_1 = C_1 $	110.4 (3)		
2210 reflections	$\Delta q_{\rm min} = -0.30 {\rm e} {\rm \AA}^{-3}$		110.2 (3)		119.0 (3)		
250 parameters	Atomic scattering factors	C6-C7-O3-C19	98.1 (4)	C16-C17-O2-C18	176.9 (3)		
2.57 parameters	Atomic scattering factors	C9-C8-04-C20	13.4 (5)	C17-C16-O1-C21	168.3 (4)		
Unly H-atom U's refined from SHELX76		Data many summated for I should and a last of a first					

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2 \times 10^3)$

Data were corrected for Lorentz and polarization effects. A value for R_{int} is missing since only a unique data set was collected. The structure was solved by direct methods (Sheldrick, 1986) and refined with *SHELX76* (Sheldrick, 1976). Positions of H atoms were generated and included in structure-factor calculations with refined isotropic temperature factors (riding mode). All calculations were performed on a PC/AT computer.

This study was supported by the Ministry of Science and Technology of Serbia.

Experimental

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71157 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1026]

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1558.
- Gašić, O., Popović, M. & Dragutinović, A. (1985). Zb. Prir. Nauke Matica Srp. 69, 99-106.
- Glasby, J. C. (1975). *Encyclopedia of the Alkaloids*, Vol. 2, p. 1298. London: Plenum Press.
- Ribár, B., Radivojević, P., Gašić, O., Kanyó, I. & Golič, Lj. (1992). Acta Cryst. C48, 944-945.
- Ribár, B., Lazar, D., Radivojević, P., Engel, P., Gašić, O. & Kanyó, I. (1992). Acta Cryst. C48, 1864–1866.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELX86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Zhao, G., Ren, S., Wu, S. & Yu, L. (1988). Zhougguo Yaolixue Yu Dulixue Zazhi, **2**, 247–251.

Acta Cryst. (1993). C49, 1693-1694

2-Methyl-4-oxo-3H,5H-6-imidazo[3,4-b]-[1,2,4]triazepinecarbonitrile: Condensation Product of a β -Keto Ester with 1,5-Diamino-4-imidazolecarbonitrile under Basic Conditions

BRIAN L. BOOTH AND ROBIN G. PRITCHARD

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

A. PAULA FREITAS AND M. FERNANDA J. R. P. PROENÇA

INIC Centre of Pure and Applied Chemistry, University of Minho, 4700 Braga, Portugal

(Received 5 February 1993; accepted 19 March 1993)

Abstract

In the triazepine, a double bond links atoms 1 and 2 [C=N = 1.276 (3) Å] with no evidence of an alternative tautomer in which the double bond is between 2 and 3 [C-C = 1.490 (4) Å]. ¹H NMR spectroscopy in d_6 -DMSO confirms that this is the only tautomer present

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved in solution. A hydrogen bond between the triazepine N—H and the imidazo N atom in an adjacent molecule $[N \cdots N \ 2.950 \ (3), H \cdots N \ 1.99 \ (2) \ \text{Å}, N - H \cdots N \ 172 \ (2)^{\circ}]$ links the molecules into infinite spirals along *b*.

Comment

Following our recent synthesis of 1,5-diamino-4-imidazolecarbonitrile in high yield (Alves, Booth, Freitas & Proença, 1992), we have undertaken a detailed study of its reactions with β -keto esters under basic conditions. It was clear from spectroscopic data that the reaction with sodium ethyl acetoacetate occurs by condensation of the 1- and 5-amino groups with both the keto and ester functions. However, it was impossible to decide from the available data whether the compound had structure (1) (formed by attack of the 1amino group at the keto carbonyl and the 5-amino group at the ester carbonyl) or the alternative structure formed by inverting the ethyl acetoacetate group.

This work establishes (1) as the sole product in contrast to the finding of Bernardi, Viallefont & Zniber (1978) who reported that the reaction between 1,5-diamino-2phenylimidazole and ethyl acetoacetate at the reflux temperature of xylene gives a mixture in which both the keto and ester carbonyls react with each of the amine substituents.

Fig. 1. The title molecule, showing atomic numbering scheme, drawn using ORTEPII (Johnson, 1976).